Moderate Deviations Type Evaluation for Integral Functionals of Diffusion Processes
نویسنده
چکیده
where Ψ and g are smooth functions, ξε t is a “fast” ergodic diffusion whileXε t is a “slow” diffusion type process, κ ∈ (0, 1/2). Under the assumption that g has zero barycenter with respect to the invariant distribution of the fast diffusion, we derive the main result from the moderate deviation principle for the family (ε−κ ∫ t 0 g(ξ ε s)ds)t≥0, ε ↘ 0 which has an independent interest as well. In addition, we give a preview for a vector case.
منابع مشابه
Markov Dilation of Diffusion Type Processes and Its Application to the Financial Mathematics
The Markov dilation of diffusion type processes is defined. Infinitesimal operators and stochastic differential equations for the obtained Markov processes are described. Some applications to the integral representation for functionals of diffusion type processes and to the construction of a replicating portfolio for a non-terminal contingent claim are considered.
متن کاملTwo-scale large deviations for chemical reaction kinetics through second quantization path integral
Motivated by the study of rare events for a typical genetic switching model in systems biology, in this paper we aim to establish the general two-scale large deviations for chemical reaction systems. We build a formal approach to explicitly obtain the large deviation rate functionals for the considered twoscale processes based upon the second quantization path integral technique. We get three i...
متن کاملModerate deviations for diffusions with Brownian potentials
We present precise moderate deviation probabilities, in both quenched and annealed settings, for a recurrent diffusion process with a Brownian potential. Our method relies on fine tools in stochastic calculus, including Kotani’s lemma and Lamperti’s representation for exponential functionals. In particular, our result for quenched moderate deviations is in agreement with a recent theorem of Com...
متن کاملModerate deviations of inhomogeneous functionals of Markov processes and application to averaging
In this paper, we study the moderate deviation principle of an inhomogeneous integral functional of a Markov process ( s) which is exponentially ergodic, i.e. the moderate deviations of 1 √ h( ) ∫ : 0 f(s; s= ) ds; in the space of continuous functions from [0; 1] to R, where f is some R-valued bounded function. Our method relies on the characterization of the exponential ergodicity by Down– Mey...
متن کاملApproximations of non-smooth integral type functionals of one dimensional diffusion processes∗
In this article, we obtain the weak and strong rates of convergence of time integrals of non-smooth functions of a one dimensional diffusion process. We propose the use the exact simulation scheme to simulate the process at discretization points. In particular, we also present the rates of convergence for the weak and strong error of approximation for the local time of a one dimensional diffusi...
متن کامل